GLIA Reasearch Laboratory

Debasish Sinha, PhD
Jennifer Salvitti Davis, M.D. Chair in Ophthalmology Research
Professor of Ophthalmology, Cell Biology and Developmental Biology
University of Pittsburgh School of Medicine
Adjunct Faculty, Ophthalmology, The Johns Hopkins University School of Medicine
 

Laboratory Personnel

Christopher Fitting, BS, Research Technician

Stacey Hose, BA Laboratory Manager

Peng Shang, PhD, Postdoctoral Associate

Meysam Yazdankhah, PhD, Postdoctoral Associate

Nadezda Stepicheva, PhD, Postdoctoral Scholar

Sayan Ghosh, PhD, Postdoctoral Associate

Haitao Liu, PhD, Postdoctoral Associate

Urvi Gupta, Pre-Professional Scholars Program in Medicine, Case Western Reserve University, Research Trainee


Research Interests

Our laboratory is interested in understanding the role of glia and glia-like cells (retinal pigmented epithelium) in ocular health and disease.  We use genetically engineered mouse and spontaneous mutant rat models as tools to decipher functions of these cells in health and disease.  The diseases we focus on are (1) Age-related Macular Degeneration (AMD) (2) Diabetic Retinopathy (DR) and (3) Persistent Fetal Vasculature (PFV).

 

Selected Publications

Original articles

  1. Zigler JS Jr. et al. Mutation in the bA3/A1-crystallin gene impairs phagosome degradation in the retinal pigmented epithelium of the rat. Journal of Cell Science (2011), 124: 523-531. PMID: 21266465.
  2. Valapala M et al. Impaired endolysosomal function disrupts Notch signaling in optic nerve astrocytes. Nature Communications (2013), 4: 1629. PMID: 23535650.
  3. Valapala M et al. Lysosomal-mediated waste clearance in retinal pigmented epithelial cells is regulated by CRYBA1/bA3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy (2014), 10(3): 480-496. PMID: 24468901.
  4. Valapala M et al.  Increased Lipocalin-2 in the retinal pigment epithelium of Cryba1 cKO mice is associated with a chronic inflammatory response. Aging Cell (2014), 13(6): 1091-4. PMID: 25257511.
  5. Shang P et al. The amino acid transporter SLC36A4 regulates the amino acid pool in retinal pigmented epithelial cells and mediates the mechanistic target of rapamycin, complex 1 signaling. Aging Cell (2017), 16 (2): 349-359. PMID: 28083894.
  6. Ghosh S et al. Activating the AKT2-nuclear factor-kB-lipocalin-2 axis elicits an inflammatory response in age-related macular degeneration. The Journal of Pathology (2017), 241(5): 583-588. PMID: 28026019.
  7. Ghosh S et al.  A Role for bA3/A1-Crystallin in Type 2 EMT of RPE Cells Occurring in Dry Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science (2018), 59(4): AMD104-AMD113. PMID: 30098172.
  8. Wang J et al. ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nature Communications (2018), 9(1): 1364. PMID: 29636475.
  9. Ghosh S et al.  Neutrophils homing into the retina trigger pathology in early age-related macular degeneration. Communications Biology, (2019), 2: 348. PMID: 31552301.
  10. Yazdankhah M et al. Modulating EGFR/MTORC1/Autophagy as a potential therapy for Persistent Fetal Vasculature (PFV) disease. Autophagy (2020), 16(6): 1130-1142. PMID: 31462148.

Contact Information

Debasish Sinha, PhD
Children’s Hospital of Pittsburgh of UPMC
One Children’s Hospital Drive
4401 Penn Avenue
John G. Rangos Sr. Research Center of University of Pittsburgh School of Medicine
3rd Floor, Bays 5 & 6
Pittsburgh, PA 15224
debasish@pitt.edu
debasish@jhmi.edu
412-692-9462